标签:#柔性电子
喷鼻香港城市大学(城大)的研究职员在室温下成功地使全无机钙钛矿变形,而不影响其功能特性,从而在可变形电子和能源系统领域取得了重大打破。钙钛矿是一类半导体,由于其精良的性能和增强的环境稳定性,在能量转换和光电子领域受到了极大的关注。
Researchers from the City University of Hong Kong (CityU) have achieved a major breakthrough in the field of deformable electronics and energy systems by successfully morphing all-inorganic perovskites at room temperature without compromising their functional properties. Perovskites are a class of semiconductors that have gained significant attention in energy conversion and optoelectronics due to their exceptional performance and enhanced environmental stability.

传统上,无机半导体很脆,很难加工,这限定了它们在须要承受机器应力和应变的光电子器件中的运用。为了战胜这一限定,由城市大学陈富荣教授和何钟贤教授领导的研究小组探索了所有无机钙钛矿的变形能力。他们创造钙钛矿可以在保持其功能特性的同时变形为不同的几何形状,这在传统无机半导体中是前所未有的。
Conventionally, inorganic semiconductors are brittle and difficult to process, which limits their applications in optoelectronic devices that need to withstand mechanical stress and strain. To overcome this limitation, the research team led by Professor Chen Fu-Rong and Professor Johnny Ho Chung-yin from CityU explored the deformability of all-inorganic perovskites. They discovered that perovskites can be morphed into distinct geometries while maintaining their functional properties, a feat unprecedented in conventional inorganic semiconductors.
研究职员合成了CsPbX3的单晶微柱(个中X可以是Cl、Br或I离子),并对其进行了压缩实验。他们在晶格中的多个滑移系统上不雅观察到部分位错的连续滑移,使微柱能够变形成各种形状而不会断裂。钙钛矿晶格中的变形区表现出未破坏的功能特性,证明了这些材料在可变形光电子方面的潜力。
The researchers synthesized single-crystal micropillars of CsPbX3 (where X can be Cl, Br, or I ions) and subjected them to compression experiments. They observed continuous slips of partial dislocations on multiple slip systems in the crystal lattice, enabling the micropillars to deform into various shapes without fracturing. The deformation zone in the perovskite crystal lattice exhibited undamaged functional properties, proving the potential of these materials for deformable optoelectronics.
该团队进一步进行了电子和构造剖析,以理解变形能力背后的潜在机制。他们确定低滑移能垒和强Pb–X键是保持晶体构造完全性的关键成分,同时许可随意马虎的滑移。CsPbX3晶格的带隙在变形后保持不变,表明材料的电子构造没有受到影响。
The team further conducted electronic and structural analyses to understand the underlying mechanism behind the morphing ability. They identified a low-slip energy barrier and strong Pb–X bonds as key factors that maintain the crystal’s structural integrity while allowing facile slips. The bandgap of the CsPbX3 crystal lattice remained unchanged after deformation, indicating that the electronic structure of the material was unaffected.
这一打破为设计和制造创新能源设备和可变形电子产品铺平了道路。这一创造对探索其他具有类似性子的韧性半导体具有主要意义。
This breakthrough paves the way for designing and manufacturing innovative energy devices and deformable electronics. The findings have important implications for exploring other ductile semiconductors with similar properties.
参考文献:李晓翠等,“所有无机钙钛矿的多滑移变形”,《自然材料》(2023)。DOI:10.1038/s41563-023-01631-z
Reference: Xiaocui Li et al, “Multislip-enabled morphing of all-inorganic perovskites,” Nature Materials (2023). DOI: 10.1038/s41563-023-01631-z
本文内容来源于网络资料,由【情报强企】整理