电源每每是我们在电路设计过程中最随意马虎忽略的环节。作为一款精良的设计,电源设计应该是很主要的,它很大程度影响了全体系统的性能和本钱。电源设计中的电容利用,每每又是电源设计中最随意马虎被忽略的地方。
一、电源设计中电容的事情事理
在电源设计运用中,电容紧张用于滤波(filter)和退耦/旁路(decoupling/bypass)。滤波是将旗子暗记中特定波段频率滤除的操作,是抑制和防止滋扰的一项主要方法。根据不雅观察某一随机过程的结果,对另一与之有关的随机过程进行估计的概率理论与方法。滤波一词起源于通信理论,它是从含有滋扰的吸收旗子暗记中提取有用旗子暗记的一种技能。“吸收旗子暗记”相称于被不雅观测的随机过程,“有用旗子暗记”相称于被估计的随机过程。

滤波紧张指滤除外来噪声,而退耦/旁路(一种,以旁路的形式达到退耦效果,往后用“退耦”代替)是减小局部电路对外的噪声滋扰。很多人随意马虎把两者搞混。下面我们看一个电路构造:
图中电源为A和B供电。电流经C1后再经由一段PCB走线分开两路分别供给A和B。当A在某一瞬间须要一个很大的电流时,如果没有C2和C3,那么会由于线路电感的缘故原由A真个电压会变低,而B端电压同样受A端电压影响而降落,于是局部电路A的电流变革引起了局部电路B的电源电压,从而对B电路的旗子暗记产生影响。同样,B的电流变革也会对A形成滋扰。这便是“共路耦合滋扰”。
增加了C2后,局部电路再须要一个瞬间的大电流的时候,电容C2可以为A暂时供应电流,纵然共路部分电感存在,A端电压不会低落太多。对B的影响也会减小很多。于是通过电流旁路起到了退耦的浸染。
一样平常滤波紧张利用大容量电容,对速率哀求不是很快,但对电容值哀求较大。如果图中的局部电路A是指一个芯片的话,而且电容尽可能靠近芯片的电源引脚。而如果“局部电路A”是指一个功能模块的话,可以利用瓷片电容,如果容量不足也可以利用钽电容或铝电解电容(条件是功能模块中各芯片都有了退耦电容— 瓷片电容)。
滤波电容的容量每每都可以从电源芯片的数据手册里找到打算公式。如果滤波电路同时利用电解电容、钽电容和瓷片电容的话,把电解电容放的离开关电源最近,这样能保护钽电容。瓷片电容放在钽电容后面。这样可以得到最好的滤波效果。
退耦电容须要知足两个哀求,一个是容量需求,另一个是ESR需求。也便是说一个0.1uF的电容退耦效果大概不如两个0.01uF电容效果好。而且,0.01uF电容在较高频段有更低的阻抗,在这些频段内如果一个0.01uF电容能达到容量需求,那么它将比0.1uF电容拥有更好的退耦效果。
很多管脚较多的高速芯片设计辅导手册会给出电源设计对退耦电容的哀求,比如一款500多脚的BGA封装哀求3.3V电源至少有30个瓷片电容,还要有几个大电容,总容量要200uF以上…
二、各种电源中电容器的精确选用
电容器作为基本元件在电子线路中起着重要浸染,在传统的运用中,电容器紧张用作旁路耦合、电源滤波、隔直以及小旗子暗记中的振荡、延时等。随着电子线路,特殊是电力电子电路的发展对不同运用处所的电容器提出了不同的分外哀求。电容器的构造上提及。最大略的电容器是由两端的极板和中间的绝缘电介质(包括空气)[1]构成的。通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,以是全体电容器是不导电的。不过,这样的情形是在没有超过电容器的临界电压(击穿电压)的条件条件下的。我们知道,任何物质都是相对绝缘的,当物质两端的电压加大到一定程度后,物质是都可以导电的,我们称这个电压叫击穿电压。
电容也不例外,电容被击穿后,就不是绝缘体了。不过在中学阶段,这样的电压在电路中是见不到的,以是都是在击穿电压以下事情的,可以被当做绝缘体看。但是,在互换电路中,由于电流的方向是随韶光成一定的函数关系变革的。而电容器充放电的过程是有韶光的,这个时候,在极板间形成变革的电场,而这个电场也是随韶光变革的函数。
1.滤波电容器互换电(工频或高频)经整流后需用电容器滤波使输出电压平滑,哀求电容器容量大,一样平常多采取铝电解电容器。铝电解电容器运用时紧张问题是温度与寿命关系,基本遵照50℃法则。因此在很多哀求高温和高可靠性场合下,应选用龟龄命(如5000h 以上,乃至105℃,5000h)电解电容器。一样平常体积小的电解电容器,其寿命相对较短。
用于DC/DC 开关稳压电源输入滤波电容器,因开关变换器因此脉冲形式向电源汲取电能,故滤波电容器中流过较大的高频电流,当电解电容器等效串联电阻(ESR)较大时,将产生较大损耗,导致电解电容器发热。而低ESR 电解电容器则可明显减小纹波(特殊是高频纹波)电流产生的发热。
用于开关稳压电源输出整流的电解电容器,哀求其阻抗频率特性在300kHz 乃至500kHz时仍不呈现上升趋势。而普通电解电容器在100kHz 后就开始呈现上升趋势,用于开关电源输出整流滤波效果相对较差。笔者在实验中创造,普通CDII 型中4700μF,16V 电解电容器,用于开关电源输出滤波的纹波与尖峰并不比CD03HF 型4700μF,16V 高频电解电容器的低,同时普通电解电容器温升相对较高。当负载为突变情形时,用普通电解电容器的瞬态相应远不如高频电解电容器。
由于铝电解电容器在高频段不能很好地发挥浸染,应辅之以高频特性好的陶瓷或无感薄膜电容器,其紧张优点是:高频特性好,ESR 低,如MMK5 型容量1μF 电容器,谐振频率达2MHz 以上,等效阻抗小于0.02Ω,远低于电解电容器,而且容量越小谐振频率越高(可达50MHz 以上),这样将得到很好的电源的输出频率相应或动态相应。
在滤波电容器中我们着重讲解在开关电源中若何选用滤波电容
开关电源若何选用滤波电容
滤波电容在开关电源中起着非常主要的浸染,如何精确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技能职员十分关心的问题。
50赫兹工频电路中利用的普通电解电容器,其脉动电压频率仅为100赫兹,充放电韶光是毫秒数量级。为得到更小的脉动系数,所需的电容量高达数十万微法,因此普通低频铝电解电容器的目标因此提高电容量为主,电容器的电容量、损耗角正切值以及泄电流是鉴别其利害的紧张参数。而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数万赫兹,乃至是数十兆赫兹。这时电容量并不是其紧张指标,衡量高频铝电解电容利害的标准是“阻抗- 频率”特性。哀求在开关电源的事情频率内要有较低的等效阻抗,同时对付半导体器件事情时产生的高频尖峰旗子暗记具有良好的滤波浸染。
许多电子设计者都知道滤波电容在电源中起的浸染,但在开关电源输出端用的滤波电容上,与工频电路中选用的滤波电容并不一样,其上的脉动电压频率仅有 100 赫兹,充放电韶光是毫秒数量级,为得到较小的脉动系数,须要的电容量高达数十万微法,因而一样平常低频用普通铝电解电容器制造,目标因此提高电容量为主,电容器的电容量、损耗角正切值以及泄电流是鉴别其利害的紧张参数。
在开关稳压电源中作为输出滤波用的电解电容器,其上锯齿波电压的频率高达数十千赫,乃至数十兆赫,它的哀求和低频运用时不同,电容量并不是紧张指标,衡量它好坏的则是它的阻抗一频率特性,哀求它在开关稳压电源的事情频段内要有低的等的阻抗,同时,对付电源内部,由于半导体器件开始事情所产生高达数百千赫的尖峰噪声,亦能有良好的滤波浸染,一样平常低频用普通电解电容器在10 千赫旁边,其阻抗便开始呈现感性,无法知足开关电源利用哀求。
普通的低频电解电容器在万赫兹旁边便开始呈现感性,无法知足开关电源的利用哀求。而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。电流从四端电容的一个正端流入,经由电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。
开关稳压电源专用的高频铝电解电容器,它有四端个子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。稳压电源的电流从四端电容的一个正端流入,经由电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。由于四端电容具有良好的高频特性,它为减小输出电压的脉动分量以及抑制开关尖峰噪声供应了极为有利的手段。
开关稳压电源具有多功能综合保护:稳压器除了最基本的稳定电压功能以外,还应具有过压保护(超过输出电压的+10%)、欠压保护(低于输出电压的 -10%)、缺相保护、短途经载保护最基本的保护功能。尖脉冲抑制(可选):电网有时会涌现幅值很高,脉宽很窄的尖脉冲,它会击穿耐压较低的电子元件。稳压电源的抗浪涌组件能够对这样的尖脉冲起到很好的抑制浸染。
高频铝电解电容器还有多芯的形式,它将铝箔分成较短的多少小段,用多引出片并联连接以减小容抗中的电阻成份,同时,采取低电阻率的材料并用螺杆作为引出端子,以增强电容器承受大电流的能力。
叠片电容也称为无感电容,一样平常电解电容器的芯子都卷成圆柱形,等效串联电感较大;叠片电容的构造和书本相仿,因流过电流产生的磁通方向相反而被抵消,因而降落了电感的数值,具有更为优秀的高频特性,这种电容一样平常做成方形,便于固定,还可以适当减小占机体积。
图 电容降压电源电路
2.接管与换相电容器
随着栅控半导体器件的额定功率越做越大,开关速率越来越快,额定电压越来越高,对缓冲电路的电容器仅仅哀求足够的耐压、容量及精良的高频特性是不足的。
在大功率电力电子电路中,由于IGBT 的开关速率已小于1μs,哀求接管电路电容器上的电压变革速率dv/dt》 V/μs 已是很正常的,有的哀求 V/μs 乃至 V/μs。
对付普通电容器,特殊是普通金属化电容器的dv/dt《100V/μs,分外金属化电容器的dv/dt≤200V/μs,专用双金属化电容器小容量(小于10nF)的dv/dt≤1500V/μs,较大容量(小于0.1μF)的则为600V/μs,在这种巨大且重复率很高的峰值电流冲击下是很难承受的。破坏电力电子电路的征象。
目前接管电路专用电容器,即金属箔电极可承受较大的峰值电流和有效值电流冲击,如:较小容量(10nF 以下)的可承受100000V/μs~455000V/μs 的电压变革率、3700A 峰值电流和达9A 有效值电流(如CDV30FH822J03);较大容量(大于10nF,小于0.47μF)或较大尺寸的可承受大于3400V/μs 以及1000A 峰值电流的冲击。
由此可见,只管同是无感电容、金属化和金属箔电容,运用在接管电路中将有不同的表现,形状附近但规格不同在这里是绝对不能互换的。电容器的尺寸将影响电容器的dv/dt 及峰值电流的耐量,一样平常而言,长度越大dv/dt 和峰值电流则相对较小。
接管电路中电容器的事情特点是高峰值电流占空比小,有效值电流不十分高,与这种电路相似的还有晶闸管逆变器的换相电容器,只管这种电容器哀求的dv/dt 较接管电容器小,但峰值电流与有效值电流均较大,采取普通电容器在电流方面不能知足哀求。
在某些分外运用中哀求储能电容器反复急匆匆放电,而且放电回路电阻极低、寄生电感很小,在这种场合下只能将接管电容并联利用以担保长期利用的可靠性。
3.谐振电容器谐振式变换器,如谐振式开关稳压电源及晶闸管中频电源谐振回路中的谐振电容器,事情时每每流过很大电流。又如电子镇流器的谐振电容规格选择不当时,会涌现电容上电压虽没达到击穿电压但由于流过较大的谐振电流而破坏的征象。
在含有电容和电感的电路中,如果电容和电感并联,可能涌如今某个很小的韶光段内:电容的电压逐渐升高,而电流却逐渐减少;与此同时电感的电流却逐渐增加,电感的电压却逐渐降落。而在另一个很小的韶光段内:电容的电压逐渐降落,而电流却逐渐增加;与此同时电感的电流却逐渐减少,电感的电压却逐渐升高。电压的增加可以达到一个正的最大值,电压的降落也可达到一个负的最大值,同样电流的方向在这个过程中也会发生正负方向的变革,此时我们称为电路发生电的振荡。
电路振荡征象可能逐渐消逝,也可能持续不变地坚持着。当震荡持续坚持时,我们称之为等幅振荡,也称为谐振。谐振韶光电容或电感两锻电压变革一个周期的韶光称为谐振周期,谐振周期的倒数称为谐振频率。所谓谐振频率便是这样定义的。
综上所述,在当代电源技能中,不同运用处所须要不同性能的电容器,不能混用、滥用、错用,以尽可能肃清不应涌现的破坏,并担保产品性能。
三、电容降压式电源设计实例
将互换市电转为低压直流的常规方法是采取变压器降压后再整流滤波,当受体积和本钱等成分限定时,最大略实用的方法便是采取电容降压式电源。
1.电容降压式电源电路事理
电容降压式大略单纯电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1供应放电回路,D3是稳压二极管,R1 为关断电源后C1的电荷泄放电阻。在实际运用时常常采取的是图2的所示的电路。当须要向负载供应较大的电流时,可采取图3所示的桥式整流电路。整流后未经稳压的 直流电压一样平常会高于30伏,并且会随负载电流的变革发生很大的颠簸,这是由于此类电源内阻很大的缘故所致,故不适宜大电流供电的运用处所。
2.阻容降压电路的器件选择原则
(1)电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。多余的电流就会流过稳压管,若稳压管的最 大许可电流Idmax小于Ic-Io时易造成稳压管烧毁。
(2)为担保C1可靠事情,其耐压选择应大于两倍的电源电压。(3)泄放电阻R1的选择必须担保在哀求的韶光内泄放掉C1上的电荷。
3.设计举例
图2中,已知C1为0.33μF,互换输入为220V/50Hz,求电路能供给负载的最大电流。
C1在电路中的容抗Xc为:Xc=1 /(2 πf C)= 1/(23.14500.3310-6)= 9.65K流过电容器C1的充电电流(Ic)为:Ic = U / Xc = 220 / 9.65 = 22mA。
常日降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,个中C的容量单位是μF,Io的单位是A。
免责声明:本文转自网络,版权归原作者所有,如涉及作品版权问题,请及时与我们联系,感激!